Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 14: 1136308, 2023.
Article in English | MEDLINE | ID: covidwho-2322722

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods: The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion: We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.


Subject(s)
COVID-19 , Memory B Cells , Humans , COVID-19 Vaccines , BNT162 Vaccine , Flow Cytometry , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Health Personnel , Immunoglobulin G
2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2295703

ABSTRACT

Continuous evaluation of the coronavirus disease 2019 (COVID-19) vaccine effectiveness in hemodialysis (HD) patients is critical in this immunocompromised patient group with higher mortality rates due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The response towards vaccination in HD patients has been studied weeks after their first and second SARS-CoV-2 vaccination dose administration, but no further studies have been developed in a long-term manner, especially including both the humoral and cellular immune response. Longitudinal studies that monitor the immune response to COVID-19 vaccination in individuals undergoing HD are therefore necessary to prioritize vaccination strategies and minimize the pathogenic effects of SARS-CoV-2 in this high-risk group of patients. We followed up HD patients and healthy volunteers (HV) and monitored their humoral and cellular immune response three months after the second (V2+3M) and after the third vaccination dose (V3+3M), taking into consideration previous COVID-19 infections. Our cellular immunity results show that, while HD patients and HV individuals secrete comparable levels of IFN-γ and IL-2 in ex vivo stimulated whole blood at V2+3M in both naïve and COVID-19-recovered individuals, HD patients secrete higher levels of IFN-γ and IL-2 than HV at V3+3M. This is mainly due to a decay in the cellular immune response in HV individuals after the third dose. In contrast, our humoral immunity results show similar IgG binding antibody units (BAU) between HD patients and HV individuals at V3+3M, independently of their previous infection status. Overall, our results indicate that HD patients maintain strong cellular and humoral immune responses after repeated 1273-mRNA SARS-CoV-2 vaccinations over time. The data also highlights significant differences between cellular and humoral immunity after SARS-CoV-2 vaccination, which emphasizes the importance of monitoring both arms of the immune response in the immunocompromised population.

3.
Pediatr Rheumatol Online J ; 20(1): 64, 2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1993366

ABSTRACT

BACKGROUND: Data about safety and efficacy of the mRNA SARS-CoV-2 vaccine in adolescents with rheumatic diseases (RD) is scarce and whether these patients generate a sufficient immune response to the vaccine remains an outstanding question. OBJECTIVE: To evaluate safety and humoral and cellular immunity of the BNT162b2 vaccine in adolescents 12 to 18 years with RD and immunosuppressive treatment compared with a healthy control group. METHODS: Adolescents from 12 to 18 years with RD followed at Hospital La Paz in Madrid (n = 40) receiving the BNT162b2 mRNA vaccination were assessed 3 weeks after complete vaccination. Healthy adolescents served as controls (n = 24). Humoral response was measured by IgG antiSpike antibodies, and cellular response by the quantity of IFN-γ and IL-2 present in whole blood stimulated with SARS-CoV-2 Spike and M proteins. RESULTS: There were no differences in spike-specific humoral or cellular response between groups (median IFN-γ response to S specific protein; 528.80 pg/ml in controls vs. 398.44 in RD patients, p 0.78, and median IL-2 response in controls: 635.68 pg/ml vs. 497.30 in RD patients, p 0.22. The most frequent diagnosis was juvenile idiopathic arthritis (26/40, 65%) followed by Lupus (6/40, 15%). 60% of cases (23/40) received TNF inhibitors and 35% (14/40) methotrexate. 40% of patients (26/64) had previous SARS-CoV-2 infection, 9 in the control group and 17 in the RD patients without differences. Of note, 70% of infections were asymptomatic. A higher IFN-γ production was found in COVID-19 recovered individuals than in naive subjects in both groups (controls: median 859 pg/ml in recovered patients vs. 450 in naïve p 0.017, and RD patients: 850 in recovered vs. 278 in naïve p 0.024). No serious adverse events or flares were reported following vaccination. CONCLUSIONS: We conclude that standard of care treatment for adolescents with RD including TNF inhibitors and methotrexate did not affect the humoral and the cellular immunity to BNT162b2 mRNA vaccination compared to a healthy control group. The previous contact with SARS-CoV-2 was the most relevant factor in the immune response.


Subject(s)
COVID-19 , Rheumatic Diseases , Viral Vaccines , Adolescent , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Interleukin-2 , Methotrexate , RNA, Messenger , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors , Viral Vaccines/genetics
4.
Current research in immunology ; 3:136-145, 2022.
Article in English | EuropePMC | ID: covidwho-1905100

ABSTRACT

Graphical Image 1 Highlights • This introduction for the first Alicante-Winter Immunology Symposium in Health (A-WISH) and the Boulle-SEI Awards, seeks to promote the efforts of Spanish scientists in the advancement of the study of immunology, infectious diseases and vaccinology, and also to disseminate the development of novel approaches in diagnosis and therapeutics of diseases that involve the immune system.• On December 16th and 17th 2021 the Spanish Society of Immunology (SEI) and the University of Alicante (UA) joined forces to organize the first A-WISH (https://a-wish.org).• In this first symposium, researchers shared their expertise to address strategies for the COVID-19 response and pandemic preparedness.

5.
Nat Biotechnol ; 40(11): 1680-1689, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1890202

ABSTRACT

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Immunity, Cellular , Polymerase Chain Reaction , T-Lymphocytes
6.
Allergol Immunopathol (Madr) ; 50(3): 101-105, 2022.
Article in English | MEDLINE | ID: covidwho-1836059

ABSTRACT

BACKGROUND: Patients with primary antibody deficiencies, such as Common Variable Immunodeficiency (CVID), have some problems to assess immune response after coronavirus disease (COVID) vaccination. Cutaneous delayed-type hypersensitivity (DTH) has the potential to be used as a useful, simple, and cheaper tool to assess T-cell (T lymphocyte) function. METHODS: Seventeen patients with CVID, a rare disease, received two doses of the mRNA-based Pfizer-BioNTech COVID-19 vaccine. Humoral Immune Response (HIR) was determined by measuring specific immunoglobulin G (IgG) antibodies, and Cellular Immune Response (CIR) was evaluated using an ex vivo interferon-gamma release assay (IGRA) and in vivo by DTH skin test. RESULTS: Two weeks after the second dose of the vaccine, 12 out of 17 CVID patients have high optical density (OD) ratios of specific anti-spike protein (S) IgG whereas five patients were negative or low. Ex vivo CIR was considered positive in 14 out of 17 S1-stimulated patients. Unspecific stimulation was positive in all 17 patients showing no T-cell defect. A positive DTH skin test was observed in 16 CVID patients. The only patient with negative DTH also had negative ex vivo CIR. CONCLUSIONS: The use of DTH to evaluate CIR was validated with an optimal correlation with the ex vivo CIR. The CIR after vaccination in patients with antibody deficiencies seems to have high precision and more sensitivity to antibodies-based methods in CVID. CLINICAL IMPLICATIONS: There is a remarkable correlation between cutaneous DTH and ex vivo IGRA after COVID vaccination. A COVID-specific skin DTH test could be implemented in large populations. CAPSULE SUMMARY: Cutaneous delayed-type hypersensitivity has the potential to be used as a useful, simple, and cheaper tool to assess T-cell functioning.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
7.
Front Immunol ; 13: 845882, 2022.
Article in English | MEDLINE | ID: covidwho-1785345

ABSTRACT

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-É£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Longitudinal Studies , RNA, Messenger/genetics , Renal Dialysis , SARS-CoV-2 , Vaccination/methods
8.
Cell Rep ; 36(8): 109570, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1356159

ABSTRACT

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Antibodies, Viral/blood , CD40 Ligand/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Interferon-gamma/metabolism , Interleukin-2/metabolism , Peptides/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Vaccination , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL